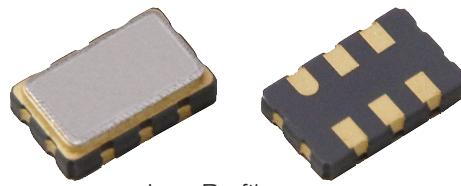


## DESCRIPTION

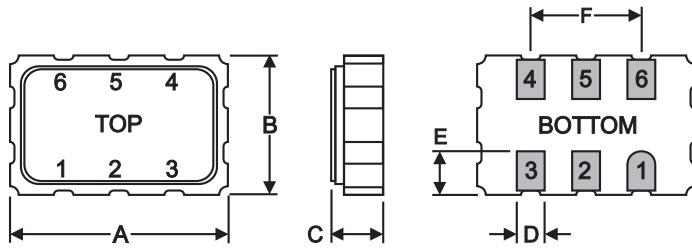
Statek's surface mount Low Voltage Differential Output Crystal Oscillators are designed for applications requiring ultra high frequency differential outputs, superior phase noise performance, and low jitter in a small footprint.

## FEATURES


- High shock option
- Low phase noise and low phase jitter
- Available at 2.5 V and 3.3 V operating voltages
- Low Allan deviation without PLL artifacts
- High frequency fundamental mode crystal
- Ultra-low period jitter

## APPLICATIONS

- Avionics
- Communications
- Guidance and Navigation

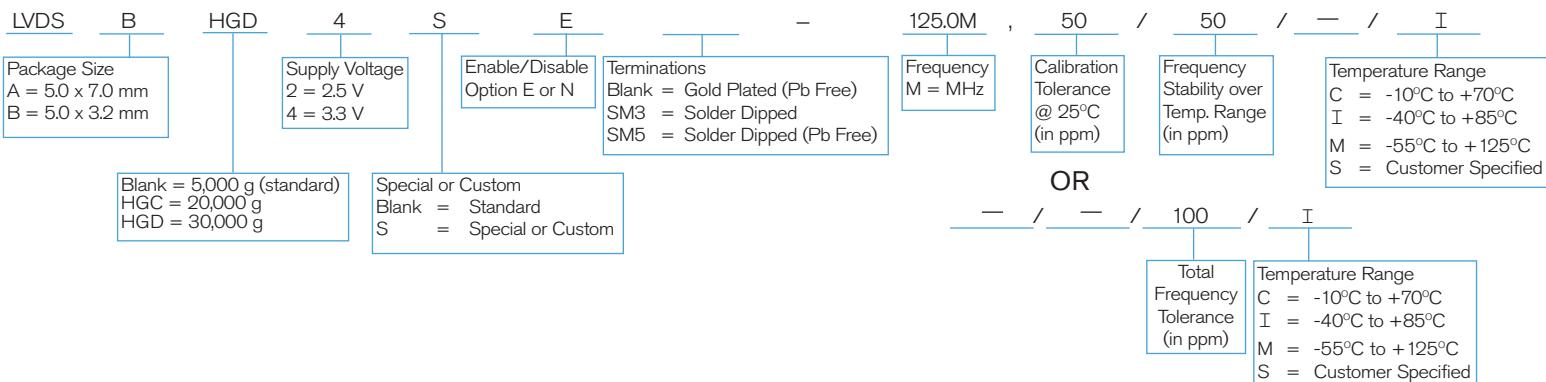

## PIN CONNECTIONS

1. Enable/Disable (E) or not connected (N)
2. Not Connected (NC)
3. Ground
4. LVDS
5. LVDS (complementary)
6. Supply Voltage ( $V_{DD}$ )



Low Profile

## PACKAGE DIMENSIONS




| DIM | Termination | LVDSA        | LVDSB |
|-----|-------------|--------------|-------|
|     |             | Typical (mm) |       |
| A   |             | 7.00         | 5.00  |
| B   |             | 5.00         | 3.20  |
| C   | SM1         | 1.50         | 1.30  |
|     | SM3/SM5     | 1.60         | 1.40  |
| D   |             | 1.40         | 0.64  |
| E   |             | 1.10         | 1.20  |
| F   |             | 5.08         | 2.54  |

## PACKAGING OPTIONS

LVDS - Tray Pack  
- Tape and reel Per EIA 481

## HOW TO ORDER LVDS SURFACE MOUNT CRYSTAL OSCILLATORS



## ENABLE/DISABLE OPTIONS (E/N)

Statek offers two enable/disable options: E and N. The E-version has a tri-state output and stops oscillating internally when the output is put into the high Z state. The N-version does not have PIN 1 connected internally and so has no enable/disable capability. The following table describes the Enable/Disable option E.

### ENABLE/DISABLE OPTION E FUNCTION TABLE

|            | Enable (Pin 1 High*) | Disable (Pin 1 Low) |
|------------|----------------------|---------------------|
| Output     | Frequency Output     | High Z State        |
| Oscillator | Oscillates           | Stops               |
| Current    | Normal               | Very Low            |

\*When PIN 1 is allowed to float, it is held high by an internal pull-up resistor.

## ABSOLUTE MAXIMUM RATINGS

|                                 |                      |
|---------------------------------|----------------------|
| Supply Voltage $V_{DD}$         | -0.3 V to 4.0 V      |
| Storage Temperature             | -55°C to +150°C      |
| Maximum Process Temperature     | 260°C for 10 seconds |
| ESD Protection Human Body Model | 2 kV                 |

## SPECIFICATION TABLES

Parameters listed are at 25°C unless otherwise noted.

| Parameter                        | Symbol | Units | Tightest | Standard  | Maximum | Conditions / Comments              |
|----------------------------------|--------|-------|----------|-----------|---------|------------------------------------|
| Frequency                        |        | MHz   |          | 10 to 160 |         |                                    |
| Supply Voltage                   |        | V     |          | 3.3 ±10%  |         | 2.5 ±10% available                 |
| Calibration Tolerance            |        | ppm   | ±25      | ±50       | ±100    | At 25°C Other tolerances available |
| Frequency Stability <sup>1</sup> |        | ppm   | ±50      | ±75       | ±100    | -55°C to +125°C                    |
|                                  |        | ppm   | ±30      | ±50       | ±100    | -40°C to +85°C                     |
| Frequency Tolerance (Total)      |        | ppm   | ±40      | ±50       | ±100    | -40°C to +85°C                     |
| Shock, survival <sup>2</sup>     |        | g     |          |           | 5,000   | 0.3 ms, ½ sine: LVDSA              |
|                                  |        | g     |          |           | 30,000  | 0.3 ms, ½ sine: LVDSB              |
| Vibration, survival <sup>3</sup> |        | g     |          | 20        |         | 10-2,000 Hz swept sine             |
| Aging                            |        | ppm   |          | ±5        |         | First year depending on frequency  |

| LVDS Output Parameter                        | Symbol          | Units | Minimum | Typical | Maximum | Conditions / Comments                    |
|----------------------------------------------|-----------------|-------|---------|---------|---------|------------------------------------------|
| Output Differential Voltage                  | $V_{OD}$        | mV    | 247     | 330     | 454     | RL = 100 Ω (1%)<br>See Figure 1          |
| Output Differential Voltage Error            | $\Delta V_{OD}$ | mV    |         |         | 50      |                                          |
| Output High Voltage                          | $V_{OH}$        | V     |         | 1.4     | 1.6     |                                          |
| Output Low Voltage                           | $V_{OL}$        | V     | 0.9     | 1.1     |         |                                          |
| Offset Voltage                               | $V_{OS}$        | V     | 1.125   | 1.250   | 1.375   |                                          |
| Offset Voltage Error                         | $\Delta V_{OS}$ | mV    | 0       |         | 50      |                                          |
| Output Leakage                               | $I_{OS}$        | uA    |         |         | 10      | $V_{OUT} = V_{DD}$ or GND (OE=0V)        |
| Stand by Current                             | $I_{OSD}$       | uA    |         |         | 15      | Ta ≤ +85°C                               |
|                                              |                 |       |         |         | 30      | Ta > +85°C                               |
| Rise Time (Differential Clock)               | $t_R$           | ps    |         | 200     |         | RL = 100 Ω (20% to 80%)                  |
| Fall Time (Differential Clock)               | $t_F$           | ps    |         | 200     |         | See Figures 2 and 3                      |
| Supply Current (Outputs Loaded) <sup>4</sup> | $I_{DD}$        | mA    |         | 25      | 30      |                                          |
| Duty Cycle (Output Clock) <sup>5</sup>       |                 | %     | 40      |         | 60      | At Differential 0V. See Figures 2 and 3. |
| Output Swing                                 | $V_{DIFF}$      | V     | 0.4     |         |         | See Figure 2                             |

| Timing Jitter - 125 MHz | Symbol | Units | Minimum | Typical | Maximum | Conditions / Comments          |
|-------------------------|--------|-------|---------|---------|---------|--------------------------------|
| Jitter (Integrated)     |        | ps    |         | 0.053   |         | 125 MHz (12 kHz to 20 MHz RMS) |
| Jitter (Period)         |        | ps    |         | 1.0     |         | 125 MHz (10,000 cycles RMS)    |

| Phase Noise - 125 MHz | Symbol        | Units  | 1 kHz offset | 10 kHz offset | 100 kHz offset | 20 MHz offset | 40 MHz offset |
|-----------------------|---------------|--------|--------------|---------------|----------------|---------------|---------------|
| Typical (LVDS)        | $\mathcal{L}$ | dBc/Hz | -132         | -149          | -155           | -165          | -166          |

1. Does not include calibration tolerance.

2. Shock survival 10 MHz - 125 MHz.

3. Per MIL-STD-202G, Method 204D, Random vibration testing also available.

4. Typical for 160 MHz, 3.3 V.

5. Contact factory for 45-55% duty cycle.



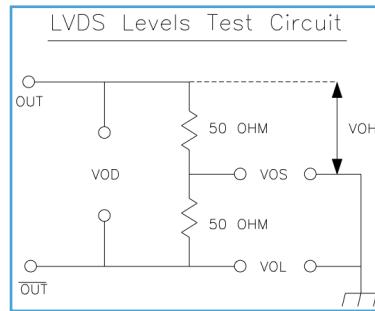



Figure 1

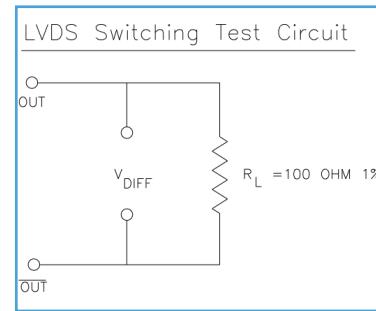



Figure 2

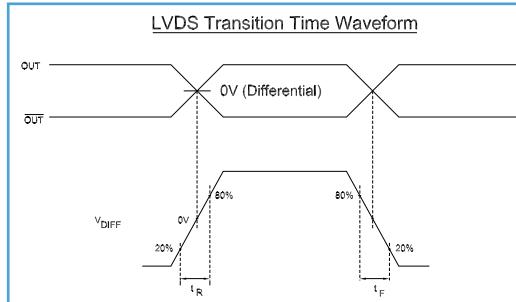
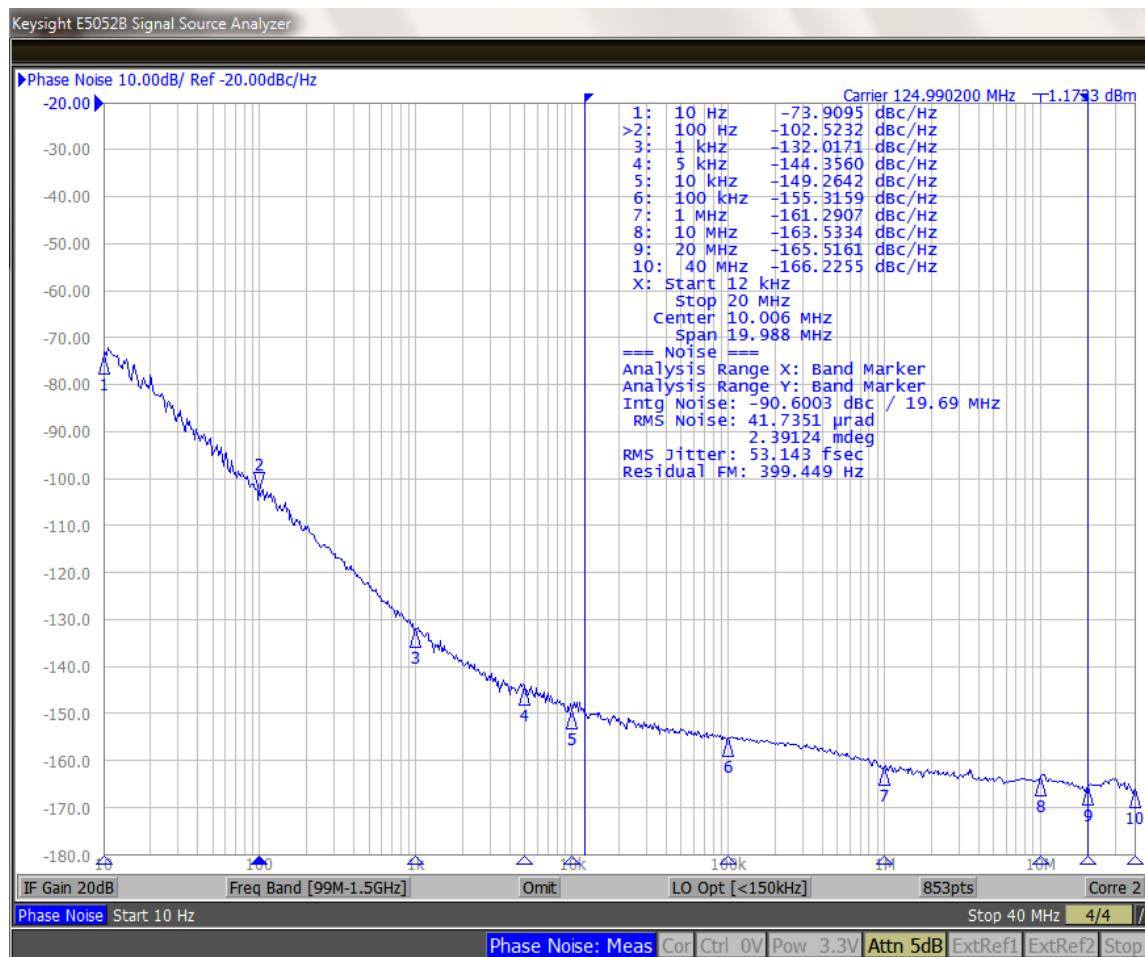




Figure 3

## PHASE NOISE PERFORMANCE AT 125 MHZ



Jitter (Integrated) 53 fsec Typical

10231 Rev D

STATEK CORPORATION 512 N. MAIN ST., ORANGE, CA 92868 714-639-7810 FAX: 714-997-1256 [www.statek.com](http://www.statek.com)

