EURO QUARTZ

DFXO OSCILLATORS

LVDS-LVPECL-CMOS Differential Oscillator

STATEK

20MHz to 300MHz

Page 1 of 3

FEATURES

- LVDS LVPECL CMOS outputs available
- Low phase noise Low phase jitter
- Internal 0.01µF SMD decoupling capacitor option
- Low Allen deviation
- High Frequency Fundamental Mode Crystal
- Extended Industrial temperature range

DESCRIPTION

The DFXO series, 7 x 5mm SMD differential output oscillator is designed for applications requiring low jitter and ultra high frequency differential poutputs in a small footprint. Offered at frequencies from 20MHz to 300MHz with operation over a wide temperature range (-40° to $+105^{\circ}$ C). No external decoupling capacitor is required with optional internal capacitor. Designed and manufactured in USA by Statek Inc.

APPLICATIONS

Military & Aerospace

- Avionics
- Communications
- Networking

SPECIFICATION

Frequency Range:	20MHz to 300MHz
1 / 3	
Supply Voltage1:	+3.3Volts ±10%
	(+2.5V ±10% available)
Operating Temperature:	-40° to +85°C
Shock, survival:	5,000g 0.3ms, ½ sine
Vibration, Survival:	20g, 10-2000Hz swept sine

ABSOLUTE MAXIMUM RATINGS

Supply Voltage VDD:	-0.5Volts to 1.6 Volts			
Storage Temperature:	-65° to +150°C			
Maximum Process Temperature:	260°C for 10 seconds			
ESD Protection Human Body Model 2kV.				

TERMINATIONS

Designation	Termination
SM1	Gold Plated (Pb Free)
SM3	Solder dipped
SM5	Solder dipped (Pb Free)

OUTLINE & DIMENSIONS

Pad Connections

- 1 Enable/Disable or not connected (N)
- 2 (NC) Not Connected
- 3 Ground 4 IVDS - IVPECL
 - LVDS LVPECL CMOS
- 5 LVDS LVPECL (complementary)
- 6 Supply Voltage (VDD)

PACKAGING OPTIONS

- DFXO: Tray Pack
 - Tape and Reel per EIA 481

ENABLE/DISABLE OPTIONS (T/N)

There are two Enable/Disable options, T and N. THe 'T' version has a Tri-state output and continues to oscillate internally when the output is put into the High Z state. As a result, when re-enabled, the oscillator does not have to restart and output with a stable frequency resumes almost immediately. The 'N' version does not have PIN 2 connected internally and so has no enable/disable function. The following table describes the Enable/Disable option 'T'.

	ENABLE (Pin 1 High)	DISABLE (Pin 1 Low)	
Output	Frequency Output	High Z State	
Oscillator	Oscillates	Oscillates	
Current	Normal	Lower than normal	

DFXO OSCILLATORS

LVDS-LVPECL-CMOS Differential Oscillator

STATEK

EUROQUARTZ

20MHz to 300MHz

Page 2 of 3

SPECIFICATIONS TABLE Parameters listed are at TAMB 25°C unless otherwise stated.

Parameter	Symbol	Units	Tightest	Standard	Maximum	Conditions/Comments
Frequency Stability		ppm	±75	±100	±150	-40° to +105°C
		ppm	±25	±50	±100	-40° to +85°C
Ageing		ppm		±5		First year, dependant upon frequency
Calibration Tolerance		ppm	±25	±50	±100	@25°C, other tolerances available
Frequency Tolerance (Total)		ppm	±25	±50	±100	-40° to +85°C
LVDS Output						
Parameter Output Differential Voltage	Symbol	Units	Minimum	Typical	Maximum	Conditions/Comments
	V BB		247	300	454	
		MV V	-50	1.4	1.4	$RL = 100\Omega$
	VOH VOH	v	0.0	1.4	1.0	(See Figure 2.)
	Voc	v	1 125	1.1	1 275	
Offset Magnitude Change	VOS A)/aa	• m\/	0	1.2	25	
Power off Leakage			U		2J +10	
Short Circuit Current (Output)		µA m∧		±1 6	±10 8	VOU=VDU or GND(VDD=0V)
Pice Time (Differential Clerk)	IOSD		0.2	-0	-0	PL = 1000.20% to $80%$
Fall Time (Differential Clock)	TK Tr	115	0.2	0.7	1	(See Figures 3 & 4)
Supply Current (Outputs Logder	TF 201 (1	m A	0.2	0.7 30*	80	*Typical for 125MHz
Duty Cycle (Output Clock)	i) [DD	MA %	40	30	60	
		70	40		00	@1.257
Parameter	Symbol	Units	Minimum	Typical	Maximum	Conditions/Comments
Output High Voltage			VDD -1.025			$RL = 50\Omega$ to (VDD - 2V)
Output Low Voltage					VDD -1.620	See Figure 5.)
Rise Time	†R	ns		0.6	1.5	20% to 80% (See Figure 6)
Fall Time	t⊧	ns		0.5	1.5	20% to 80% (See Figure 6)
Supply Current (Outputs Loaded	l) DD	mA			100	
Duty Cycle (Output Clock)		%	40		60	@Vdd -1.3V
CMOS Output						
Parameter	Symbol	Units	Minimum	Typical	Maximum	Conditions/Comments
	•	mA	20	±50		
	Іон	mA	20	25		$V_{OH} = V_{DD} - 0.4V, V_{DD} = 3.3V$
Rice (Egll Time (CMOS)	IOL	mA	20	1.5		$V_{0L} = 0.4V, V_{DD} = 3.3V$
Output Load (CMOS)	t®t⊧ Cl	ns nE		1.5	15	(See Figure 1)
Suppli Load (CMOS)		рг m A			10	
Duty Cycle (Output Clock)	1) [BB %	mA	40		40	
Timing littor	70		40		00	@30% \00
litter (Integrated) (IVDS)		ne		03	0 4	125MHz (12kHz to 20MHz RMS)
litter (Period) (LVDS)		hs De		2	0.4	125MHz (10,000 cycles RMS)
		μs		2		12 SMI 12 (10,000 Cycles MVIS)
Phase Noise - 125MHz Of	fset Frequency	@10	Hz @100	Hz @1kl	Hz @10kH	lz @100kHz
Typical (LVDS)	dBc/Hz	-85	5 -11	0 -133	3 -143	-148

LVDS-LVPECL-CMOS Differential Oscillator 20MHz to 300MHz Page 3 of 3 **HOW TO ORDER DFXO OSCILLATORS** DFXO SM3 300.0M С 4 Т 50 / 50 Output Type C = CMOS Supply Voltage 2 = 2.5V Enable/Disable Option T or N Frequency M = MHz Calibratio Temp. Range C = -10° to +70°C I = -40° to +85°C Terminations Frequency Blank = SM1 Tolerance Stability over Temp. Range =Gold plated, (Pb free) SM3 = Solder Dipped D = IVDS4 = 3.3V@25° = LVPECL $\mathsf{E}=-40^\circ \ \text{to} \ +105^\circ \text{C}$ (in ppm) (in ppm) SM5 = Solder Dipped (Pb free S = Customer specified **ALTERNATIVELY** Figure 1. 100 / Ι --/ **CMOS** Test Circuit NC VDD O-Total Temp. Range -O Output $C = -10^{\circ} \text{ to } + 70^{\circ} \text{C}$ Frequency $I = -40^{\circ} \text{ to } +85^{\circ}\text{C}$ $E = -40^{\circ} \text{ to } +105^{\circ}\text{C}$ Toleranc 6 5 4 (±ppm) = Customer specified CMOS Load Figure 2. 0.01µF 1 2 3 LVDS Levels Test Circuit GND OUT O-T/NC NC 50Ω Р VOD o vos o-Note: a 0.1µF bypass capacitor between VDD and GND pins as close as possible is recommended to minimise power supply line noise. Figure 3. \square LVDS Switching Test Circuit OUT O-Figure 4. LVDS Transition Time Waveform CL=10pF = OUT **OV** (Differential) V RL=100Ω OUT C CL=10pF 🚔 VDIFF 80% 80% OUT O-20% Figure 5. LVPECL Levels Test Circuit Figure 6. OUT O-LVPECL Transition Time Waveform VDD / Duty Cycle 🔪 50Ω -2.0V 40-60% 40-60% OUT 80% 50Ω 50% 20% OUT tf tr

DFXO OSCILLATORS

EUROQUARTZ

STATEK